
Coding theory in post-quantum
cryptography

Vlad F. Dragoi
vlad.dragoi@uav.ro

“Aurel Vlaicu” University of Arad, Romania

Funded by Romanian Governement:
PN-III-P1-1.1-PD-2019-0285 CodebasedCrypto



Modern cryptography [DH78]



Modern Cryptography
A pair (sk, pk) s.t.

sk  pk easy
sk ←↩ pk difficult RSA (‘78), El Gamal (‘85)

The difficulty of the mathematical problems

NIST – post-quantum cryptography project 1

I Hash based cryptography
I Lattice based cryptography
I Code based cryptography
I Multivariate cryptography

1. http ://csrc.nist.gov/groups/ST/post-quantum-crypto/



Modern Cryptography
A pair (sk, pk) s.t.

sk  pk easy
sk ←↩ pk difficult RSA (‘78), El Gamal (‘85)

The difficulty of the mathematical problems 1 2

NIST – post-quantum cryptography project 3

I Hash based cryptography
I Lattice based cryptography
I Code based cryptography
I Multivariate cryptography

1. 2014. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. “A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.”

2018. R. Granger, T. Kleinjung, and J. Zumbragel. “On the discrete logarithm problem
in finite fields of fixed characteristic”.
2. 1997. Peter W. Shor. “Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer."

3. http ://csrc.nist.gov/groups/ST/post-quantum-crypto/



Modern Cryptography
A pair (sk, pk) s.t.

sk  pk easy
sk ←↩ pk difficult RSA (‘78), El Gamal (‘85)

The difficulty of the mathematical problems

NIST – post-quantum cryptography project 1

I Hash based cryptography
I Lattice based cryptography
I Code based cryptography
I Multivariate cryptography

1. http ://csrc.nist.gov/groups/ST/post-quantum-crypto/



Error correcting codes
Definition 1
A q-ary linear code C defined over Fq, of length n is a k dimension
sub-vector space of Fn

q.

Definition 2 (Hamming weight and distance)
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Fn

q

‖x‖H
def= |{i | xi 6= 0}| dH(x, y) def= |{i | xi 6= yi}|

Example
Let q = 2 and x = (1, 0, 0, 1, 0), y = (1, 0, 0, 1, 1) .
Then

‖x‖H = 2 and dH(x, y) = 1
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Syndrome decoding 2

2. 1978. Berlekamp E., McEliece R.J., Van Tilborg “On the inherent intractability of
certain coding problems.”



Information Set Decoding (ISD) 3

Complexity of ISD for ‖e‖ = o(n) is roughly

2c‖e‖(1+o(1)).

3. Prange(1957), Stern(1988), Dumer (1991), Canteaut and Chabaud (1998), May,
Meurer and Thomae (2011), Becker, Joux, May and Meurer (2012), May and Ozerov
(2015)
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McEliece cryptosystem (’78)

1. Main idea

I The private key = a code C with an efficient decoding algorithm

I The public key = a random basis for C

2. McEliece propose to use binary Goppa codes.



McEliece cryptosystem

- Key Gen :

1. Chose a generator matrix G ∈Mk,n (Fq) for a code C (corrects t
errors with an efficient algorithm).

2. Choose P a random n × n permutation matrix and S a k × k
non-singular matrix.

3. The private key sk = (S, G, P) and the public key pk = (Gpub, t) with

Gpub = SGP
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McEliece cryptosystem

Encryption
Let m ∈ Fk

q,
1. Generate a random error vector e ∈ Fn

q of Hamming weight t
2. Encrypt c = mGpub + e

Decryption
1. Compute z = cP−1 z = mSG + eP−1

2. Compute y = DecodeG(z) y = mS
3. Return m′ = yS−1 m′ = m
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Security

- No structural (Key recovery) attacks against the binary Goppa codes.

- No Message recovery attacks exploiting the structure of the underlying
code.

- Weak keys.

- Distinguisher between a random linear code and the public code in the
McEliece PKC.

- Cryptanalysis of wild Goppa codes.
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Advantages and disadvantages

- Advantages :
I Encryption and decryption are very fast

I Its security : resistant to quantum attacks (for now), solving the
syndrome pb. is NP hard.

- Disadvantages : key size
128 bits of security - 1.5 Megabits (McEliece - Goppa),

3072 bits (RSA), 256 bits (ECC)
1. Increase the minimum distance

2. Add extra structure (quasi-cyclic, quasi-dyadic)

3. Change the metric (Rank)
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Classic variants Proposal

Attacks

Binary Goppa | 1978 [McE78]
GRS | 1986 [Nie86]

1992 [SS92]

Reed-Muller | 1994 [Sid94]

2007 [MS07]

Concatenated | 1994 [Sen94]

1998 [Sen98]

Algebraic geometric | 1996 [JM96]

2014 [CMCP14]

Wild Goppa | 2010 [BLP10]

2014 [COT14, FPdP14]

Convolutional | 2012 [LJ12]

2013 [LT13]

Polar | 2014 [SK14]

2016 [BCD+16]

QC, QD Variants

QC-BCH | 2005 [Gab05]

2008 [OTD08]

QC-LDPC | 2008 [BBC08]
QC-Alternant | 2009 [BCGO09]

2014 [FOP+16]

QD-Goppa | 2009 [MB09]

2014 [FOP+16]

QD-Srivastava | 2012 [Per12]

2014 [FOP+16]

QC-MDPC | 2012 [MTSB13]

2016 [BDLO16]
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