Code-based Public-key Encryption Schemes

Vlad-Florin Dragoi
vlad.dragoi@uav.ro
Universitatea "Aurel Vlaicu" Arad, Romania
LITIS EA 4108 Université de Rouen Normandie, France

spring 2022
$\sqrt{6 C C}$

Insights into the theory of error correcting codes

Error correcting codes

Definition 1

A binary linear code \mathscr{C} defined over \mathbb{F}_{2} is a k dimension sub-vector space of \mathbb{F}_{2}^{n}. $\boldsymbol{G} \in \mathbb{F}_{2}^{k \times n}$ a basis, and $\boldsymbol{H} \in \mathbb{F}_{2}^{(n-k) \times n}$ a basis for the dual.

$$
\mathscr{C}=<\boldsymbol{G}>=\left\{\boldsymbol{c}=\boldsymbol{m} \boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}_{2}^{k}\right\} \quad \mathscr{C}=<\boldsymbol{H}>^{\perp}=\left\{\boldsymbol{H} \boldsymbol{c}=0 \mid \boldsymbol{c} \in \mathbb{F}_{2}^{n}\right\}
$$

Error correcting codes

DEfinition 1

A binary linear code \mathscr{C} defined over \mathbb{F}_{2} is a k dimension sub-vector space of \mathbb{F}_{2}^{n}. $\boldsymbol{G} \in \mathbb{F}_{2}^{k \times n}$ a basis, and $\boldsymbol{H} \in \mathbb{F}_{2}^{(n-k) \times n}$ a basis for the dual.

$$
\mathscr{C}=<\boldsymbol{G}>=\left\{\boldsymbol{c}=\boldsymbol{m} \boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}_{2}^{k}\right\} \quad \mathscr{C}=<\boldsymbol{H}>^{\perp}=\left\{\boldsymbol{H} \boldsymbol{c}=0 \mid \boldsymbol{c} \in \mathbb{F}_{2}^{n}\right\}
$$

REmARK

For any $\boldsymbol{x} \in \mathbb{F}_{2}^{n}$ denote $\operatorname{supp}(\boldsymbol{x})=\left\{i \mid x_{i} \neq 0\right\}$.
Any $\boldsymbol{x} \in \mathbb{F}_{2}^{n}$ with $|\operatorname{supp}(\boldsymbol{x})|=0 \bmod 2$ is self-orthogonal.

$$
\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\sum_{i=1}^{n} x_{i} \bmod 2=0
$$

A Linear code is a metric space

Definition 2 (Hamming Weight and distance)
Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$

$$
\|\boldsymbol{x}\| \stackrel{\text { def }}{=}\left|\left\{i \mid x_{i} \neq 0\right\}\right| \quad \mathrm{d}_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|
$$

A Linear code is a metric space

Definition 2 (Hamming weight and distance)
Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{2}^{n}$

$$
\|\boldsymbol{x}\| \stackrel{\text { def }}{=}\left|\left\{i \mid x_{i} \neq 0\right\}\right| \quad d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|
$$

$$
\begin{array}{rlrl}
\mathrm{d}_{\min }(\mathscr{C}) & =\min _{\substack{\left(\boldsymbol{c}, \boldsymbol{c}^{*}\right) \in \mathscr{C} \times \mathscr{C} \\
\boldsymbol{c} \neq \boldsymbol{c}^{*}}} \mathrm{~d}_{\mathrm{H}}\left(\boldsymbol{c}, \boldsymbol{c}^{*}\right) \\
& =\min _{\boldsymbol{c} \in \mathscr{C}, \boldsymbol{c} \neq 0} & \|\boldsymbol{c}\| \\
& =\min _{\boldsymbol{c} \in \mathscr{C}, \boldsymbol{c} \neq 0} & |\operatorname{supp}(\boldsymbol{c})|
\end{array}
$$

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- n, k are easy to determine (basis)

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- d depends on the family of codes

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- d depends on the family of codes
- Codes with particular underlying structure could have an easy computable d

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- d depends on the family of codes
- In general computing d given \boldsymbol{G} or \boldsymbol{H} is a difficult problem ${ }^{1}$

1. A. Vardy, "The intractability of computing the minimum distance of a code," in IEEE Transactions on Information Theory, vol. 43, no. 6, pp. 1757-1766, Nov. 1997

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- d depends on the family of codes
- In general computing d given \boldsymbol{G} or \boldsymbol{H} is a difficult problem
- The Gilbert-Varshamov bound, $d_{G V}$ is the smallest d s.t.

$$
\sum_{i=0}^{d-1}\binom{n}{i} \geqslant 2^{(n-k)}
$$

Code parameters

- \mathscr{C} is a $[n, k, d]$ code : n-length, k-dimension, d-minimum distance
- d depends on the family of codes
- In general computing d given \boldsymbol{G} or \boldsymbol{H} is a difficult problem
- The Gilbert-Varshamov bound, $d_{G V}$ is the smallest d s.t.

$$
\sum_{i=0}^{d-1}\binom{n}{i} \geqslant 2^{(n-k)}
$$

- In the asymptotics : The minimum distance of a $[n, k]$ linear code meets the Gilbert-Varshamov bound ${ }^{1} d_{G V}=n \delta_{G V}$

$$
1-k / n=H\left(\delta_{G V}\right)
$$

1. A. Barg and G. D. Forney, "Random codes : minimum distances and error exponents," in IEEE Transactions on Information Theory, vol. 48, no. 9, pp. 2568-2573, Sept. 2002

Encoding-DEcoding

Encoding-Decoding

Decoding

Definition 1 (Discrete channel)

Let k and m be two strictly positive integers. Then a discrete channel W is defined by

- A finite input alphabet $\mathcal{X}=\left\{x_{1}, \ldots, x_{k}\right\}$.
- A finite output alphabet $\mathcal{Y}=\left\{y_{1}, \ldots, y_{m}\right\}$.
- The transition probability matrix $\boldsymbol{P}=\left(p_{i, j}\right)_{1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m}$ with $p_{i, j}=W\left(y_{j} \mid x_{i}\right)$ is the probability that y_{i} is received knowing that x_{i} was sent over the channel.

Decoding

Definition 2

A decoder for \mathscr{C} with respect to W is a function $\mathcal{D}: \mathcal{Y}^{n} \rightarrow \mathscr{C}$. The probability that a codeword \boldsymbol{c} is decoded erroneously, given that \boldsymbol{c} was transmitted

$$
\mathrm{P}_{\mathrm{err}}(\boldsymbol{c}) \stackrel{\text { def }}{=} \sum_{\substack{\boldsymbol{y} \in \mathcal{Y}^{n} \\ \mathcal{D}(\boldsymbol{y}) \neq \boldsymbol{c}}} W(\boldsymbol{y} \mid \boldsymbol{c})
$$

The error probability of \mathcal{D} is

$$
\mathrm{P}_{\text {err }}=\max _{\boldsymbol{c} \in \mathscr{C}} \mathrm{P}_{\mathrm{err}}(\boldsymbol{c}) .
$$

Decoding

Definition 3 (Maximum-Likelihood Decoder)

Given a $[n, k, d]$ linear code \mathscr{C} over \mathbb{F}_{2} and a channel $W=\left(\mathbb{F}_{2}, \mathcal{Y}, \boldsymbol{P}\right)$ a maximum-likelihood decoder (MLD) for \mathscr{C} with respect to W is the function $\mathcal{D}_{\text {MLD }}: \mathcal{Y}^{n} \rightarrow \mathscr{C}$ defined as :
for every $\boldsymbol{y} \in \mathcal{Y}^{n}, \mathcal{D}_{\mathrm{MLD}}(\boldsymbol{y}) \stackrel{\text { def }}{=} \operatorname{argmax}_{\boldsymbol{c} \in \mathscr{C}} W(\boldsymbol{y} \mid \boldsymbol{c})$.

Decoding

Definition 3 (Maximum-Likelihood Decoder)

Given a $[n, k, d]$ linear code \mathscr{C} over \mathbb{F}_{2} and a channel $W=\left(\mathbb{F}_{2}, \mathcal{Y}, \boldsymbol{P}\right)$ a maximum-likelihood decoder (MLD) for \mathscr{C} with respect to W is the function $\mathcal{D}_{\text {MLD }}: \mathcal{Y}^{n} \rightarrow \mathscr{C}$ defined as :

$$
\text { for every } \boldsymbol{y} \in \mathcal{Y}^{n}, \mathcal{D}_{\mathrm{MLD}}(\boldsymbol{y}) \stackrel{\text { def }}{=} \operatorname{argmax}_{\boldsymbol{c} \in \mathscr{C}} W(\boldsymbol{y} \mid \boldsymbol{c}) \text {. }
$$

Ex. $\operatorname{BSC}(p)$ with crossover probability $0<p<1 / 2$

$$
\begin{aligned}
W(\boldsymbol{y} \mid \boldsymbol{c}) & =\prod_{i=1}^{n} W\left(y_{i} \mid c_{i}\right) \\
& =p^{\mathrm{d}_{\mathrm{H}}(\boldsymbol{y}, \boldsymbol{c})}(1-p)^{n-\mathrm{d}_{\mathrm{H}}(\boldsymbol{y}, \boldsymbol{c})} \\
& =(1-p)^{n}\left(\frac{p}{1-p}\right)^{\mathrm{d}_{\mathrm{H}}(\boldsymbol{y}, \boldsymbol{c})} .
\end{aligned}
$$

Decoding

Definition 3 (Maximum-Likelihood Decoder)

Given a $[n, k, d]$ linear code \mathscr{C} over \mathbb{F}_{2} and a channel $W=\left(\mathbb{F}_{2}, \mathcal{Y}, \boldsymbol{P}\right)$ a maximum-likelihood decoder (MLD) for \mathscr{C} with respect to W is the function $\mathcal{D}_{\text {MLD }}: \mathcal{Y}^{n} \rightarrow \mathscr{C}$ defined as :
for every $\boldsymbol{y} \in \mathcal{Y}^{n}, \mathcal{D}_{\mathrm{MLD}}(\boldsymbol{y}) \stackrel{\text { def }}{=} \operatorname{argmax}_{\boldsymbol{c} \in \mathscr{C}} W(\boldsymbol{y} \mid \boldsymbol{c})$.

Ex. $\operatorname{BSC}(p)$ with crossover probability $0<p<1 / 2$

$$
W(\boldsymbol{y} \mid \boldsymbol{c})=(1-p)^{n}\left(\frac{p}{1-p}\right)^{\mathrm{d}_{H}(\boldsymbol{y}, \boldsymbol{c})} .
$$

$\mathcal{D}_{\text {MLD }}(\boldsymbol{y})$ is the codeword \boldsymbol{c} which minimize $\mathrm{d}_{\mathrm{H}}(\boldsymbol{y}, \boldsymbol{c})$
\boldsymbol{c} is the closest codeword of \mathscr{C} to \boldsymbol{y}.

Nearest codeword problem

Definition 4 (Nearest Codeword Problem for BSC)

Given : $[n, k, d]$ linear code \mathscr{C} over \mathbb{F}_{2} and a vector $\boldsymbol{y} \in \mathbb{F}_{2}^{n}$. Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of minimum Hamming weight such that $\boldsymbol{y}-\boldsymbol{e} \in \mathscr{C}$.

Nearest codeword problem

Definition 4 (Nearest Codeword Problem for BSC)

Given : $[n, k, d]$ linear code \mathscr{C} over \mathbb{F}_{2} and a vector $\boldsymbol{y} \in \mathbb{F}_{2}^{n}$. Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of minimum Hamming weight such that $\boldsymbol{y}-\boldsymbol{e} \in \mathscr{C}$.

A possible solution is to use the dual code

- $\boldsymbol{y}-\boldsymbol{e} \in \mathscr{C} \Leftrightarrow \boldsymbol{H}(\boldsymbol{y}-\boldsymbol{e})=0$
- let $\boldsymbol{s}=\boldsymbol{H} \boldsymbol{y}$ be a syndrome (associated to a vector, with respect to a matrix)
- We have

$$
\boldsymbol{y}-\boldsymbol{e} \in \mathscr{C} \Leftrightarrow \boldsymbol{H e}=\boldsymbol{s}
$$

SYNDROME DECODING ${ }^{2}$

Given : A parity-check matrix \boldsymbol{H} for a $[n, k, d]$ binary linear code a syndrome vector $\boldsymbol{s} \in \mathbb{F}_{2}^{n-k}$ and $t \in \mathbb{N}$
Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of weight at most t such that $\boldsymbol{H e}=\boldsymbol{s}$.

2. 1978. Berlekamp E., McEliece R.J., Van Tilborg "On the inherent intractability of certain coding problems."

Bounded DECODING ${ }^{3}$

If there is a codeword \boldsymbol{c} s.t. $\mathrm{d}_{\mathrm{H}}(\boldsymbol{c}, \boldsymbol{y}) \leqslant\left\lfloor\frac{d-1}{2}\right\rfloor$ we talk about unique solution (bounded decoding).

Given: A parity-check matrix \boldsymbol{H} for a [$n, k]$ binary linear code a syndrome vector $\boldsymbol{s} \in \mathbb{F}_{2}^{n-k}$ and $t \leqslant\left\lfloor\frac{d-1}{2}\right\rfloor$
Promise : any $d-1$ columns of \boldsymbol{H} are linearly independent Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of weight at most t such that $\boldsymbol{H e}=\boldsymbol{s}$.
3. A Barg. Complexity issues in coding theory. Handbook of Coding Theory, Elsevier Science, 1998.

Bounded DECODING ${ }^{3}$

If there is a codeword \boldsymbol{c} s.t. $\mathrm{d}_{\mathrm{H}}(\boldsymbol{c}, \boldsymbol{y}) \leqslant\left\lfloor\frac{d-1}{2}\right\rfloor$ we talk about unique solution (bounded decoding).

Given: A parity-check matrix \boldsymbol{H} for a [$n, k]$ binary linear code a syndrome vector $\boldsymbol{s} \in \mathbb{F}_{2}^{n-k}$ and $t \leqslant\left\lfloor\frac{d-1}{2}\right\rfloor$
Promise : any $d-1$ columns of \boldsymbol{H} are linearly independent
Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of weight at most t such that $\boldsymbol{H e}=\boldsymbol{s}$.

Verifying the promise condition is NP-complete. Bounded Decoding was conjectured NP-hard for random linear codes.
3. A Barg. Complexity issues in coding theory. Handbook of Coding Theory, Elsevier Science, 1998.

Decoding

- Random linear codes :
- maximum likelihood decoding (NP-complete)

Decoding

- Random linear codes :
- maximum likelihood decoding (NP-complete)
- bounded decoding (Conjectured NP-hard)

Decoding

- Random linear codes :
- maximum likelihood decoding (NP-complete)
- bounded decoding (Conjectured NP-hard)
- Codes with a particular structure :
- maximum likelihood decoding is NP-complete even for Reed-Solomon, concatenated codes.

Decoding

- Random linear codes :
- maximum likelihood decoding (NP-complete)
- bounded decoding (Conjectured NP-hard)
- Codes with a particular structure :
- maximum likelihood decoding is NP-complete even for Reed-Solomon, concatenated codes.
- efficient algorithms for bounded decoding exist :
* Patterson/Berlekamp-Massey algorithm - Goppa codes
* Extended Euclidean Algorithm -Alternant codes, Reed-Solomon codes, BCH codes
* Bit flipping algorithm -LDPC/MDPC codes,
* Reed algorithm, Berlekamp-Welsh algorithm - Reed-Muller codes

Some useful problems

- Given a random linear code \mathscr{C} specified by \boldsymbol{G} and an erroneous codeword, retrieve the initial codeword.

$$
\psi(\boldsymbol{G m}+\boldsymbol{e}, \boldsymbol{G})=\boldsymbol{m}
$$

- Given a random linear code \mathscr{C} specified by \boldsymbol{H} and a syndrome vector, retrieve the error vector.

$$
\psi(\boldsymbol{H e}, \boldsymbol{H})=\boldsymbol{e}
$$

- Given a random linear code \mathscr{C} and a vector, distinguish between random vectors and erroneous codewords.

$$
\varphi(\boldsymbol{G}, \boldsymbol{y})= \begin{cases}0 & \text { if } \boldsymbol{y}=\text { random } \\ 1 & \text { if } \boldsymbol{y}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e}\end{cases}
$$

Public-key encryption schemes from codes

Public-key Encryption from codes

- Choose a family of codes that admits an efficient decoding algorithm

PUBLIC-KEY ENCRYPTION FROM CODES

- Choose a family of codes that admits an efficient decoding algorithm
- Intentionally add errors to a codeword - Encryption
(McEliece) $\boldsymbol{z}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e} \quad$ or $\quad \boldsymbol{m} \rightarrow \boldsymbol{e}, \boldsymbol{z}=\boldsymbol{H e}^{t}$ (Niederreiter)

PUBLIC-KEY ENCRYPTION FROM CODES

- Choose a family of codes that admits an efficient decoding algorithm
- Intentionally add errors to a codeword - Encryption

$$
\text { (McEliece) } \boldsymbol{z}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e} \quad \text { or } \quad \boldsymbol{m} \rightarrow \boldsymbol{e}, \boldsymbol{z}=\boldsymbol{H e}^{t} \text { (Niederreiter) }
$$

- Mask the structure of the underlying code - Key generation

$$
\boldsymbol{G}_{\boldsymbol{p u b}}=\boldsymbol{S G P} \quad, \quad \boldsymbol{H}_{\text {pub }}=\boldsymbol{S H} \boldsymbol{P}
$$

McEliece PKE	Niederreiter PKE
$\operatorname{KeyGen}(n, k, t)=(\mathrm{pk}, \mathrm{sk})$	
\boldsymbol{G}-generator matrix matrix of \mathscr{C}	\boldsymbol{H}-parity-check of \mathscr{C}
$\backslash \backslash \mathscr{C}$ an $[n, k]$ that corrects t errors	
An $n \times n$ permutation matrix \boldsymbol{P}	
A $k \times k$ invertible matrix \boldsymbol{S}	An $(n-k) \times(n-k)$ invertible matrix S
Compute $\boldsymbol{G}_{\text {pub }}=\mathbf{S G P}$	Compute $\boldsymbol{H}_{\text {pub }}=\boldsymbol{S H P}$
$\mathrm{pk}=\left(\boldsymbol{G}_{\text {pub }}, t\right)$	pk $=\left(\boldsymbol{H}_{\text {pub }}, t\right)$
sk $=(\boldsymbol{S}, \boldsymbol{G}, \boldsymbol{P})$	sk $=(\boldsymbol{S}, \boldsymbol{H}, \boldsymbol{P})$

$$
\operatorname{Encrypt}(\boldsymbol{m}, \mathrm{pk})=\boldsymbol{z}
$$

| Encode $\boldsymbol{m} \rightarrow \boldsymbol{c}=\boldsymbol{m} \boldsymbol{G}_{\text {pub }}$ | Encode $\boldsymbol{m} \rightarrow \boldsymbol{e}$ |
| :--- | :--- | Choose \boldsymbol{e}

$\backslash \backslash \boldsymbol{e}$ a vector of weight t

$\boldsymbol{z}=\boldsymbol{c}+\boldsymbol{e}$	$\boldsymbol{z}=\boldsymbol{H}_{\text {pub }} \boldsymbol{e}^{t}$

$\operatorname{Decrypt}(\boldsymbol{z}$, sk $)=\boldsymbol{m}$	
Compute $\boldsymbol{z}^{*}=\boldsymbol{z} \boldsymbol{P}^{-1}$	Compute $\boldsymbol{z}^{*}=\boldsymbol{S}^{-1} \boldsymbol{z}$
$\boldsymbol{z}^{*}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e} \boldsymbol{P}^{-1}$	$\boldsymbol{z}^{*}=\boldsymbol{H} \boldsymbol{P} \boldsymbol{e}$
$\boldsymbol{m}^{*}=\operatorname{Decode}\left(\boldsymbol{z}^{*}, \boldsymbol{G}\right)$	$\boldsymbol{e}^{*}=\operatorname{Decode}\left(\boldsymbol{z}^{*}, \boldsymbol{H}\right)$
Retrieve \boldsymbol{m} from $\boldsymbol{m}^{*} \boldsymbol{S}^{-1}$	Retrieve \boldsymbol{m} from $\boldsymbol{P}^{-1} \boldsymbol{e}^{*}$

Semantic Security

One-way function

- Assumptions
- Indistinguishability : The public code is computationally indistinguishable from a uniformly chosen code of the same size (n, k).
- Decoding hardness: Decoding a random linear code with parameters n, k, t is hard.

4. B. Biswas, N. Sendrier. McEliece Cryptosystem Implementation: Theory and Practice. PQCrypto. pp. 47-62. 2008.

Semantic Security

One-way function

- Assumptions
- Indistinguishability : The public code is computationally indistinguishable from a uniformly chosen code of the same size (n, k).
- Decoding hardness: Decoding a random linear code with parameters n, k, t is hard.
- Given that both the above assumptions hold, the McEliece cryptosystem is one-way secure under passive attacks. ${ }^{4}$

4. B. Biswas, N. Sendrier. McEliece Cryptosystem Implementation: Theory and Practice. PQCrypto. pp. 47-62. 2008.

Decoding Hardness in the McEliece scheme ${ }^{5}$

The binary Goppa code is a $\left[2^{m}, 2^{m}-m t, 2 t+1\right]$
5. Finiasz, Matthieu. "Nouvelles constructions utilisant des codes correcteurs d'erreurs en cryptographie à clef publique." (2004).

Decoding hardness in the McEliece scheme ${ }^{5}$

The binary Goppa code is a $\left[2^{m}, 2^{m}-m t, 2 t+1\right]$

Given : A parity-check matrix \boldsymbol{H} for a $[n, n-k$] binary linear code a syndrome vector $\boldsymbol{s} \in \mathbb{F}_{2}^{n-k}$ and $t \in \mathbb{N}\left(n=2^{m}\right)$
Find : $\quad \boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of weight $t \leqslant(n-k) / \log _{2}(n)$ such that $\boldsymbol{H e}=\boldsymbol{s}$.
5. Finiasz, Matthieu. "Nouvelles constructions utilisant des codes correcteurs d'erreurs en cryptographie à clef publique." (2004).

Distinguisher assumption for Goppa codes ${ }^{6}$

- Pseudo-randomness assumption

Input: A generator matrix \boldsymbol{G} for a $\left[2^{m}, 2^{m}-m t\right]$ binary linear code Output : G generates a Goppa code?
6. Jean-Charles Faugère, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich. A Distinguisher for High Rate McEliece Cryptosystems. IEEE Transactions on Information Theory 2013.

Semantic Security

Critical Attacks

- McEliece PKE does not satisfy Non-Malleability (linearity)
given a McEliece criptogram $\quad \boldsymbol{y}=\boldsymbol{m} \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}$ compute a well-choose criptogram $\quad \boldsymbol{y}^{*}=\boldsymbol{m}^{*} \boldsymbol{G}_{\text {pub }}$
as the oracle to decrypt $\boldsymbol{y}+\boldsymbol{y}^{*}=\left(\boldsymbol{m}+\boldsymbol{m}^{*}\right) \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}$

Semantic Security

Critical Attacks

- McEliece PKE does not satisfy Non-Malleability (linearity)
given a McEliece criptogram $\quad \boldsymbol{y}=\boldsymbol{m} \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}$
compute a well-choose criptogram $\quad \boldsymbol{y}^{*}=\boldsymbol{m}^{*} \boldsymbol{G}_{\text {pub }}$
as the oracle to decrypt $\boldsymbol{y}+\boldsymbol{y}^{*}=\left(\boldsymbol{m}+\boldsymbol{m}^{*}\right) \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}$
- Reaction attacks in the CCA model

$$
\begin{aligned}
\text { given a McEliece criptogram } & \boldsymbol{y}=\boldsymbol{m} \boldsymbol{G}_{\text {pub }}+\boldsymbol{e} \\
\text { flip a bit } & \boldsymbol{y}^{\prime}=\boldsymbol{y}+(1,0, \ldots, 0) \\
& \boldsymbol{y}^{\prime}=\boldsymbol{m} \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}+(1,0 \ldots, 0) \\
\text { if the decoder reaction is invalid ciphertext } & e_{i}=0 \\
\text { if the decoder reaction is valid ciphertext } & e_{i}=1
\end{aligned}
$$

Semantic Security

Critical Attacks

- Resend-message attacks : the same message was encrypted several times

$$
\begin{aligned}
\text { intercept } & \boldsymbol{y}_{1}=\boldsymbol{m} \boldsymbol{G}_{\boldsymbol{p} \boldsymbol{b} \boldsymbol{b}}+\boldsymbol{e}_{1} \\
\text { intercept } & \boldsymbol{y}_{2}=\boldsymbol{m} \boldsymbol{G}_{\boldsymbol{p} \boldsymbol{b} \boldsymbol{b}}+\boldsymbol{e}_{2} \\
\text { notice that } & \mathrm{d}_{\mathrm{H}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\mathrm{d}_{\mathrm{H}}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)=2 t-2 \delta
\end{aligned}
$$

if the messages were different $\quad d_{\mathrm{H}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \sim n / 2$

$$
\text { select the set } \quad I=\operatorname{supp}\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right)
$$

Gaussian elimination on $/ \quad \boldsymbol{H}_{\text {pub }} \boldsymbol{e}_{1}=\boldsymbol{s}_{1}$.

Semantic Security

Conversions

- For a McEliece IND-CPA without random oracles simply randomize the message $\boldsymbol{m}^{*}=(\boldsymbol{m} \mid \boldsymbol{r})^{7}$

7. Nojima, R., Imai, H., Kobara, K. et al. Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Cryptogr. 49, 289-305 (2008)
8. K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems Conversions for McEliece PKC, LNCS Springer, 2001

Semantic Security

Conversions

- For a McEliece IND-CPA without random oracles simply randomize the message $\boldsymbol{m}^{*}=(\boldsymbol{m} \mid \boldsymbol{r})^{7}$
- For random oracles model - convert the one way trap door function into an IND-CCA2 PKC
- simple OAEP conversion not working because of reaction attacks
- Kobara,Imai conversion to obtain an IND-CCA2 ${ }^{8}$

7. Nojima, R., Imai, H., Kobara, K. et al. Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Cryptogr. 49, 289-305 (2008)
8. K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems Conversions for McEliece PKC, LNCS Springer, 2001

McEliece and Niederreiter

MRA, KRA, Distinguisher

	McEliece	Niederreiter		
pk	$\boldsymbol{G}_{\text {pub }}$	$H_{\text {pub }}$		
MRA	Generic decoding $\begin{gathered} \operatorname{Alg}\left(\boldsymbol{m} \boldsymbol{G}_{\text {pub }}+\boldsymbol{e}, \boldsymbol{G}_{\text {pub }}\right)=\boldsymbol{m} \\ \\|\boldsymbol{e}\\| \text { small } \end{gathered}$	Syndrome decoding $\operatorname{Alg}\left(\boldsymbol{H}_{\text {pub }} \boldsymbol{e}, \boldsymbol{H}_{\text {pub }}\right)=\boldsymbol{e}$ \|e\| small		
KRA	$\begin{aligned} & \text { Code Equ } \\ \operatorname{Alg}\left(\boldsymbol{G}_{\boldsymbol{p u b}}, \boldsymbol{G}\right)= & \boldsymbol{P}^{*} \\ & \mathscr{C}^{\text {P.E. }} \mathscr{C}_{\text {pu }} \end{aligned}$	alence Problem $\begin{aligned} & \operatorname{Alg}\left(\boldsymbol{H}_{\text {pub }}, \boldsymbol{H}\right)=\boldsymbol{P}^{*} \\ \Leftrightarrow \mathscr{C}^{\perp} \stackrel{\text { P.E. }}{\sim} & \mathscr{C}_{\text {pub }}^{\perp} \end{aligned}$		
Distinguisher	$D\left(\boldsymbol{G}_{\text {pub }}\right)=\left\{\begin{array}{cc} 0 & \text { if } \delta=\delta_{\text {Goppa }} \\ 1 & \text { if } \delta=\delta_{\text {Random }} \end{array}\right.$	$D\left(\boldsymbol{H}_{\text {pub }}\right)=\left\{\begin{array}{lc} 0 & \text { if } \delta=\delta_{\text {Reed-Solomon }} \\ 1 & \text { if } \delta=\delta_{\text {Random }} \end{array}\right.$		

Distinguish a public code from a random code

Efficient distinguisher for some families of

 CODES$$
\boldsymbol{x} \star \boldsymbol{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) .
$$

Efficient distinguisher for some families of CODES

$$
\boldsymbol{x} \star \boldsymbol{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

Theorem 5 (Cascudo, Cramer, Mirandola, Zemor -2015)
Let $\mathscr{C}_{1}=\left[n, k_{1}\right]$ and $\mathscr{C}_{2}=\left[n, k_{2}\right]$. Then w.h.p. we have

$$
\operatorname{Dim}\left(\mathscr{C}_{1} \star \mathscr{C}_{2}\right)=\min \left\{n, k_{1} k_{2}-\binom{\operatorname{Dim}\left(\mathscr{C}_{1} \cap \mathscr{C}_{2}\right)}{2}\right\}
$$

Efficient distinguisher for some families of CODES

$$
\boldsymbol{x} \star \boldsymbol{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

Theorem 5 (Cascudo, Cramer, Mirandola, Zemor -2015)

Let $\mathscr{C}_{1}=\left[n, k_{1}\right]$ and $\mathscr{C}_{2}=\left[n, k_{2}\right]$. Then w.h.p. we have

$$
\operatorname{Dim}\left(\mathscr{C}_{1} \star \mathscr{C}_{2}\right)=\min \left\{n, k_{1} k_{2}-\binom{\operatorname{Dim}\left(\mathscr{C}_{1} \cap \mathscr{C}_{2}\right)}{2}\right\} .
$$

In particular, for $\mathscr{C}=[n, k]$ random binary code we have

$$
\begin{equation*}
\operatorname{Dim}\left(\mathscr{C}^{2}\right)=\min \left\{n,\binom{k+1}{2}\right\} . \tag{1}
\end{equation*}
$$

Reed-Solomon codes

Definition 6 (Generalized Reed-Solomon codes)

Let $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{F}_{2^{m}}^{n} \times \mathbb{F}_{2^{m}}^{n}$ be a pair such that $\forall i, y_{i} \neq 0$ and $\forall i \neq j, x_{i} \neq x_{j}$.
$\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}\left\{\left(y_{1} f\left(x_{1}\right), \ldots, y_{n} f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[x], \operatorname{deg}(f)<k\right\}$.

Reed-Solomon codes

Definition 6 (Generalized Reed-Solomon codes)

Let $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{F}_{2^{m}}^{n} \times \mathbb{F}_{2^{m}}^{n}$ be a pair such that $\forall i, y_{i} \neq 0$ and $\forall i \neq j, x_{i} \neq x_{j}$.
$\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}\left\{\left(y_{1} f\left(x_{1}\right), \ldots, y_{n} f\left(x_{n}\right)\right) \mid f \in \mathbb{F}_{q}[x], \operatorname{deg}(f)<k\right\}$.

$$
\boldsymbol{G}_{\mathbf{G R S}_{k}(x, y)}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{k-1} & x_{2}^{k-1} & \ldots & x_{n}^{k-1}
\end{array}\right)\left(\begin{array}{lllll}
y_{1} & & & & \\
& y_{2} & & 0 & \\
0 & & \ddots & & \\
& & & & y_{n}
\end{array}\right) .
$$

Reed-Solomon codes

$\boldsymbol{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{\perp}=\mathbf{G R S}_{n-k}(\boldsymbol{x}, \boldsymbol{z}), \quad \boldsymbol{H}_{\mathbf{G R S}_{n-1}(x, y)} \boldsymbol{z}^{\boldsymbol{T}}=0$

Reed-Solomon codes

$\boldsymbol{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{\perp}=\mathbf{G R S}_{n-k}(\boldsymbol{x}, \boldsymbol{z}), \quad \boldsymbol{H}_{\mathbf{G R S}_{n-1}(x, y)} \boldsymbol{z}^{\boldsymbol{T}}=0$
$\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{2}=\mathbf{G R S}_{2 k-1}\left(\boldsymbol{x}, \boldsymbol{y}^{2}\right)$

Reed-Solomon codes

$$
\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{\perp}=\mathbf{G R S}_{n-k}(\boldsymbol{x}, \boldsymbol{z}), \quad \boldsymbol{H}_{\mathbf{G R S}_{n-1}(x, y)} \boldsymbol{z}^{T}=0
$$

$$
\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{2}=\mathbf{G R S}_{2 k-1}\left(\boldsymbol{x}, \boldsymbol{y}^{2}\right)
$$

$$
3 \leqslant k \leqslant \frac{n+1}{2}, \quad \operatorname{Dim}\left(\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})^{2}\right)=2 k-1<\binom{k+1}{2}
$$

Reed-Muller codes

$$
\mathscr{R}(r, m) \stackrel{\text { def }}{=}\left\{\left(g\left(v_{1}, \ldots, v_{m}\right)\right)_{\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{F}_{2}^{m}} \mid g \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right], \operatorname{deg} g \leqslant r\right\} .
$$

Reed-Muller codes

$$
\mathscr{R}(r, m) \stackrel{\text { def }}{=}\left\{\left(g\left(v_{1}, \ldots, v_{m}\right)\right)_{\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{F}_{2}^{m}} \mid g \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right], \operatorname{deg} g \leqslant r\right\} .
$$

$$
\operatorname{Dim}(\mathscr{R}(r, m))=\sum_{i=0}^{r}\binom{m}{i}
$$

Reed-Muller

$$
\mathscr{R}(r, m)^{\perp}=\mathscr{R}(m-r-1, m)
$$

Reed-Muller

$$
\begin{gathered}
\mathscr{R}(r, m)^{\perp}=\mathscr{R}(m-r-1, m) \\
\mathscr{R}(r, m)^{2}=\mathscr{R}(2 r, m)
\end{gathered}
$$

Reed-Muller

$$
\begin{gathered}
\mathscr{R}(r, m)^{\perp}=\mathscr{R}(m-r-1, m) \\
\mathscr{R}(r, m)^{2}=\mathscr{R}(2 r, m) \\
\operatorname{Dim}\left(\mathscr{R}(r, m)^{2}\right)=\sum_{i=0}^{2 r}\binom{m}{i}<\binom{\sum_{i=0}^{r}\binom{m}{i}+1}{2} .
\end{gathered}
$$

Alternant and Goppa codes

$$
\operatorname{Alt}_{r}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \mathbf{G R S}_{r}(\boldsymbol{x}, \boldsymbol{y})^{\perp} \cap \mathbb{F}_{2}^{n} .
$$

Alternant and Goppa codes

$$
\begin{gathered}
\mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \mathbf{G R S}_{r}(\boldsymbol{x}, \boldsymbol{y})^{\perp} \cap \mathbb{F}_{2}^{n} . \\
\Gamma(\boldsymbol{x}, g) \stackrel{\text { def }}{=} \mathbf{A l t}_{t}(\boldsymbol{x}, \boldsymbol{y}), \text { where } y_{i}=\frac{1}{g\left(x_{i}\right)}, g \in \mathbb{F}_{2^{m}}[x], \operatorname{deg} g=t
\end{gathered}
$$

Alternant and Goppa codes

$\boldsymbol{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \mathbf{G R S}_{r}(\boldsymbol{x}, \boldsymbol{y})^{\perp} \cap \mathbb{F}_{2}^{n}$.
$\Gamma(\boldsymbol{x}, g) \stackrel{\text { def }}{=} \mathbf{A l t}_{t}(\boldsymbol{x}, \boldsymbol{y})$, where $y_{i}=\frac{1}{g\left(x_{i}\right)}, g \in \mathbb{F}_{2^{m}}[x], \operatorname{deg} g=t$
Alt $_{r}(\boldsymbol{x}, \boldsymbol{y})^{2}=? ? ?^{9}$
9. https://arxiv.org/pdf/2111.13038.pdf

Binary Goppa codes

Wanted for crypto resilience

Definition 7 (Binary Goppa codes)

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2^{m}}^{n}$ with $x_{i} \neq x_{j}$, $g \in \mathbb{F}_{2^{m}}[x]$ with $\operatorname{deg}(g)=t$ s.t. $\forall 1 \leqslant i \leqslant n, g\left(x_{i}\right) \neq 0$. $\forall \boldsymbol{c} \in \mathbb{F}_{2}^{n}$ define the rational function $s_{c}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{n} \frac{c_{i}}{x-x_{i}}$. The binary Goppa code is

$$
\Gamma(\boldsymbol{x}, g) \stackrel{\text { def }}{=}\left\{\boldsymbol{c} \in \mathbb{F}_{2}^{n} \mid s_{\boldsymbol{c}}(x) \equiv 0 \quad \bmod g(x)\right\} .
$$

Patterson Algorithm

- If $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$ then

$$
s_{y}(x)=\sum_{i=0}^{n} \frac{c_{i}+e_{i}}{x-x_{i}} \equiv s_{e}(x) \quad \bmod g(x)
$$

Patterson Algorithm

- If $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$ then

$$
s_{y}(x)=\sum_{i=0}^{n} \frac{c_{i}+e_{i}}{x-x_{i}} \equiv s_{e}(x) \quad \bmod g(x)
$$

- This implies

$$
s_{y}(x) \equiv \sum_{i \in \operatorname{supp}(e)} \frac{1}{x-x_{i}} \bmod g(x)
$$

- $\sigma(x)$ is called the error-locator polynomial : $\sigma(x)=\prod_{i \in \operatorname{supp}(e)}\left(x-x_{i}\right)$.

Patterson Algorithm

$$
\begin{aligned}
\sigma(x)^{\prime} & =\sum_{i \in \operatorname{supp}(e)}^{n} \prod_{j \in \operatorname{supp}(e), j \neq i}\left(x-x_{j}\right) \\
& =\sum_{i \in \operatorname{supp}(e)}^{n} \frac{1}{x-x_{i}} \prod_{i \in \operatorname{supp}(e)}\left(x-x_{i}\right) \\
& =\sigma(x) \sum_{i \in \operatorname{supp}(e)}^{n} \frac{1}{x-x_{i}} \\
\sigma^{\prime}(x) & \equiv \sigma(x) s_{y}(x) \bmod g(x)
\end{aligned}
$$

Patterson Algorithm

- Let $\sigma(x)=a(x)^{2}+x b(x)^{2}(\operatorname{deg}(a) \leqslant(t-1) / 2, \operatorname{deg}(b) \leqslant t / 2)$.
- This implies $\sigma(x)^{\prime}=b(x)^{2}$ (over \mathbb{F}_{2}), which makes

$$
b^{2}=\sigma^{\prime}=\sigma s_{y}=\left(a^{2}+x b^{2}\right) s_{y} \quad \bmod g
$$

- Since s_{y}, g coprime, we have

$$
a^{2}=b^{2} \sqrt{x+s_{y}^{-1}} \quad \bmod g .
$$

- Find $a(x), b(x)$ using Extended Euclidean Algorithm and compute $\sigma(x)$.

Patterson Algorithm

Input : The syndrome polynomial $s_{s}(x)$ and the Goppa code $g(x)$.
Output : The error vector \boldsymbol{e}
(1) $s_{s}(x)^{-1} \leftarrow \operatorname{EEA}\left(g(x), s_{s}(x)\right)$
(2) $\tau(x) \leftarrow \sqrt{x+s_{\boldsymbol{s}(x)}-1}$
(3) $a(x), b(x) \leftarrow \mathrm{EEA}(g(x), \tau(x))$ s.t. $b(x) \tau(x) \equiv a(x) \bmod g(x)$

- $\sigma(x) \leftarrow a^{2}(x)+x b^{2}(x)$
- $\boldsymbol{e} \quad \leftarrow\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right) \oplus(1, \ldots, 1)$;

McEliece and Niederreiter Summary Perspectives

Summary

Other constructions

Alekhnovich's Cryptosystems

- Underlying problem : distinguish a random vector from an erroneous codeword of a random code \mathscr{C}.

Other constructions

Alekhnovich's Cryptosystems

- Underlying problem : distinguish a random vector from an erroneous codeword of a random code \mathscr{C}.
- The public key is a random code while the private key is an error vector.

Other constructions

Alekhnovich's Cryptosystems

- Underlying problem : distinguish a random vector from an erroneous codeword of a random code \mathscr{C}.
- The public key is a random code while the private key is an error vector.
- Decryption is probabilistic

Alekhnovich's Cryptosystems

- Key Generation

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$
(2) Choose $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ at random of weight t

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$
(0) Choose $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ at random of weight t
(Choose $\boldsymbol{x} \in \mathbb{F}_{2}^{k}$ at random

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$
(3) Choose $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ at random of weight t
(Choose $\boldsymbol{x} \in \mathbb{F}_{2}^{k}$ at random
- Compute $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{A}+\boldsymbol{e}$ and $\boldsymbol{H}=\binom{\boldsymbol{A}}{\boldsymbol{y}}$

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$
(c) Choose $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ at random of weight t
(Choose $\boldsymbol{x} \in \mathbb{F}_{2}^{k}$ at random
- Compute $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{A}+\boldsymbol{e}$ and $\boldsymbol{H}=\binom{\boldsymbol{A}}{\boldsymbol{y}}$
(0) Choose \boldsymbol{G} a generator matrix for $\mathscr{C}=\operatorname{ker}(\boldsymbol{H})$.

Alekhnovich's Cryptosystems

- Key Generation
(1) Chose a random matrix $\boldsymbol{A} \in \mathcal{M}_{k, n}\left(\mathbb{F}_{2}\right)$
(2) Choose $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ at random of weight t
(Choose $\boldsymbol{x} \in \mathbb{F}_{2}^{k}$ at random
- Compute $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{A}+\boldsymbol{e}$ and $\boldsymbol{H}=\binom{\boldsymbol{A}}{\boldsymbol{y}}$
(1) Choose \boldsymbol{G} a generator matrix for $\mathscr{C}=\operatorname{ker}(\boldsymbol{H})$.
(0) The private key $\mathrm{sk}=(\boldsymbol{e})$ and the public key $\mathrm{pk}=(\boldsymbol{G}, t)$

Alekhnovich's CRYptosystem

Encryption

Let $\boldsymbol{m} \in \mathbb{F}_{2}$,
(1) If $\boldsymbol{m}=0$ then
choose $\boldsymbol{a} \in \mathbb{F}_{2}^{n-k}$
choose $\boldsymbol{e}^{\prime} \in \mathbb{F}_{2}^{n}$ of weight t
send $\boldsymbol{c}=\boldsymbol{a} \boldsymbol{G}+\boldsymbol{e}^{\prime}$
(2) If $\boldsymbol{m}=1$ then send a random vector $\boldsymbol{c} \in \mathbb{F}_{2}^{n}$

Alekhnovich's CRYptosystem

Encryption

Let $\boldsymbol{m} \in \mathbb{F}_{2}$,
(1) If $\boldsymbol{m}=0$ then
choose $\boldsymbol{a} \in \mathbb{F}_{2}^{n-k}$
choose $\boldsymbol{e}^{\prime} \in \mathbb{F}_{2}^{n}$ of weight t
send $\boldsymbol{c}=\boldsymbol{a} \boldsymbol{G}+\boldsymbol{e}^{\prime}$
(2) If $\boldsymbol{m}=1$ then send a random vector $\boldsymbol{c} \in \mathbb{F}_{2}^{n}$

Decryption

(1) Compute $\boldsymbol{b}=\langle\boldsymbol{e}, \boldsymbol{c}\rangle$
(2) If $\boldsymbol{m}=0$ then $\boldsymbol{b}=0$ w.h.p.

$$
\boldsymbol{b}=\langle\boldsymbol{e}, \boldsymbol{a} \boldsymbol{G}\rangle+\left\langle\boldsymbol{e}, \boldsymbol{e}^{\prime}\right\rangle=\left\langle\boldsymbol{e}, \boldsymbol{e}^{\prime}\right\rangle
$$

(3) If $\boldsymbol{m}=1$ then $\boldsymbol{b}=1$ w.p. $1 / 2$

Questions

