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Insights into the theory of error
correcting codes



ERROR CORRECTING CODES

DEFINITION 1
A binary linear code € defined over F, is a k dimension sub-vector space of 3.
G € FK*" a basis, and H € F"™*" 2 basis for the dual.

¢ =<G>={c=mG|mcTFi} €=<H>={Hc=0|cecTFj;}
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ERROR CORRECTING CODES

DEFINITION 1

A binary linear code € defined over F, is a k dimension sub-vector space of 3.
G € FK*" a basis, and H € F"™*" 2 basis for the dual.

¢ =<G>={c=mG|mcTFi} €=<H>={Hc=0|cecTFj;}

REMARK
For any x € [F] denote supp(x) = {i | x; # 0}.
Any x € F5 with |supp(x)| =0 mod 2 is self-orthogonal.

(x,x) =) x; mod2=0.

i=1
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A LINEAR CODE IS A METRIC SPACE

DEFINITION 2 (HAMMING WEIGHT AND DISTANCE)
Let x = (x1,...,x,) andy = (y1,...,¥n) € F}

IxIl <14 | x # 0} du(x,y) Z'1{i | x5 # i}
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A LINEAR CODE IS A METRIC SPACE

DEFINITION 2 (HAMMING WEIGHT AND DISTANCE)
Let x = (x1,...,x,) andy = (y1,...,¥n) € F}

IxIl <14 | x # 0} du(x,y) Z'1{i | x5 # i}

dmin (%) - (c,cp;elg”x% dH(C’ ¢ )
c#c*
—  min_
c€%,c#0
= i |supp(c)|-

min
c€¥,c#0
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CODE PARAMETERS

@ ¢ is a [n, k,d] code : n-length, k-dimension, d-minimum distance
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CODE PARAMETERS

@ ¢ is a [n, k,d] code : n-length, k-dimension, d-minimum distance

e d depends on the family of codes
» Codes with particular underlying structure could have an easy computable d
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CODE PARAMETERS

@ ¢ is a [n, k,d] code : n-length, k-dimension, d-minimum distance

@ d depends on the family of codes
» In general computing d given G or H is a difficult problem!

1. A. Vardy, "The intractability of computing the minimum distance of a code," in IEEE
Transactions on Information Theory, vol. 43, no. 6, pp. 1757-1766, Nov. 1997
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CODE PARAMETERS

e ¢ is a [n, k,d] code : n-length, k-dimension, d-minimum distance

e d depends on the family of codes
» In general computing d given G or H is a difficult problem

» The Gilbert-Varshamov bound, d¢y is the smallest d s.t.
d—1
Z <"> > o(n—k)
i—0 \/

» In the asymptotics : The minimum distance of a [n, k| linear code meets the
Gilbert-Varshamov bound ! dgy = ndgy

1—k/n=H(bcv)
1. A. Barg and G. D. Forney, "Random codes : minimum distances and error exponents," in

IEEE Transactions on Information Theory, vol. 48, no. 9, pp. 2568-2573, Sept. 2002
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ENCODING-DECODING

message
source

encoder

c=mG

channel

y=c+e

decoder

Alg(G,y)=c

user
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ENCODING-DECODING

message m c y m
source encoder channel decoder user
c=mG y=c+e Alg(G,y)=c
1-p
0 0
[2)
1 1
1-p
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DECODING

DEFINITION 1 (DISCRETE CHANNEL)
Let kK and m be two strictly positive integers. Then a discrete channel W is defined
by
o A finite input alphabet X' = {x,..., x}.
o A finite output alphabet Y = {y1,...,ym}
o The transition probability matrix P = (pij);c;c 1<jcm With pij = W(y;|x;) is
the probability that y; is received knowing that x; was sent over the channel.

y
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DECODING

DEFINITION 2
A decoder for & with respect to W is a function D : V" — 7.
The probability that a codeword c is decoded erroneously, given that ¢ was

transmitted ot
Par(c) = Y W(y|c).
yey”
D(y)#c

The error probability of D is

Perr = Tea(é( Perr(c)-
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DECODING

DEFINITION 3 (MAXIMUM-LIKELIHOOD DECODER)

Given a [n, k, d] linear code € over F, and a channel W = (F,, ), P) a
maximum-likelihood decoder (MLD) for € with respect to W is the function
Duip @ V" — € defined as :

for every y € V", Dyp(y) & argmax ., W(y | c).
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DECODING

DEFINITION 3 (MAXIMUM-LIKELIHOOD DECODER)

Given a [n, k, d] linear code € over F, and a channel W = (F,, ), P) a
maximum-likelihood decoder (MLD) for € with respect to W is the function
Duip @ V" — € defined as :

for every y € V", Dyp(y) & argmax ., W(y | c).

Ex. BSC(p) with crossover probability 0 < p < 1/2

W(y|c)= H W(yi | c)
i=1
_ de(y@)(l _ p)”_dH(y7C)

dH(yVC)
p
=(1—p)"| —— .
(1-p) (1-,;)
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DECODING

DEFINITION 3 (MAXIMUM-LIKELIHOOD DECODER)

Given a [n, k, d] linear code € over F, and a channel W = (F,, ), P) a
maximum-likelihood decoder (MLD) for € with respect to W is the function
Duvip : V" — € defined as :

for every y € V", Dyp(y) & argmax ., W(y | c).

Ex. BSC(p) with crossover probability 0 < p < 1/2

Wiy | c)=(1-p) (”)dw’c).

1-p

Duip(y) is the codeword ¢ which minimize dy(y, c)

c is the closest codeword of € to y.
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NEAREST CODEWORD PROBLEM

DEFINITION 4 (NEAREST CODEWORD PROBLEM FOR BSC)

Given : [n, k,d] linear code € over F, and a vector y € FF3.
Find : e € ] of minimum Hamming weight such that y — e € €.
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NEAREST CODEWORD PROBLEM

DEFINITION 4 (NEAREST CODEWORD PROBLEM FOR BSC)

Given : [n, k,d] linear code € over F, and a vector y € FF3.
Find : e € ] of minimum Hamming weight such that y — e € €.

A possible solution is to use the dual code
»ry—ec¥<Hy—-e=0
» let s = Hy be a syndrome (associated to a vector, with respect to a matrix)
» We have
y—ec¥ < He=s
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SYNDROME DECODING 2

Given :

Find :

A parity-check matrix H for a [n, k, d] binary linear code
a syndrome vector s € F3 % and t € N
e € ] of weight at most t such that He = s.

€
T | | T

X S

r Y -

2. 1978. Berlekamp E., McEliece R.J., Van Tilborg “On the inherent intractability of certain
coding problems.”
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BOUNDED DECODING 3

If there is a codeword ¢ s.t. du(c,y) < [95*] we talk about unique solution
(bounded decoding).

Given : A parity-check matrix H for a [n, k] binary linear code
a syndrome vector s € Fj * and t < |45}
Promise : any d — 1 columns of H are linearly independent

Find : e € 7 of weight at most t such that He = s.

3. A Barg. Complexity issues in coding theory. Handbook of Coding Theory, Elsevier Science,
1998.
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BOUNDED DECODING 3

If there is a codeword ¢ s.t. du(c,y) < [95*] we talk about unique solution
(bounded decoding).

Given : A parity-check matrix H for a [n, k] binary linear code
a syndrome vector s € Fj * and t < |45}
Promise : any d — 1 columns of H are linearly independent

Find : e € 7 of weight at most t such that He = s.

Verifying the promise condition is NP-complete. Bounded Decoding was
conjectured NP-hard for random linear codes.

3. A Barg. Complexity issues in coding theory. Handbook of Coding Theory, Elsevier Science,
1998.
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DECODING

@ Random linear codes :
» maximum likelihood decoding (NP-complete)
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DECODING

@ Random linear codes :

» maximum likelihood decoding (NP-complete)
» bounded decoding (Conjectured NP-hard)

e Codes with a particular structure :

» maximum likelihood decoding is NP-complete even for Reed-Solomon,
concatenated codes.
» efficient algorithms for bounded decoding exist :
* Patterson/Berlekamp-Massey algorithm - Goppa codes
* Extended Euclidean Algorithm -Alternant codes, Reed-Solomon codes, BCH
codes
* Bit flipping algorithm -LDPC/MDPC codes,
* Reed algorithm, Berlekamp-Welsh algorithm - Reed-Muller codes
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SOME USEFUL PROBLEMS

@ Given a random linear code % specified by G and an erroneous codeword,
retrieve the initial codeword.

Y(Gm+ e, G) =m

@ Given a random linear code ¥ specified by H and a syndrome vector, retrieve

the error vector.
(He, H) = e

@ Given a random linear code % and a vector, distinguish between random
vectors and erroneous codewords.

_J 0 ify = random
SO(G’y)_{l ify =mG + e
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Public-key encryption schemes from
codes



PUBLIC-KEY ENCRYPTION FROM CODES

@ Choose a family of codes that admits an efficient decoding algorithm
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PUBLIC-KEY ENCRYPTION FROM CODES

@ Choose a family of codes that admits an efficient decoding algorithm

@ Intentionally add errors to a codeword — Encryption

(McEliece) z=mG + e or m — e, z = He" (Niederreiter)
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PUBLIC-KEY ENCRYPTION FROM CODES

@ Choose a family of codes that admits an efficient decoding algorithm

@ Intentionally add errors to a codeword — Encryption

(McEliece) z=mG + e or m — e, z = He" (Niederreiter)

@ Mask the structure of the underlying code — Key generation

Gp» =SGP | Hyu, = SHP

16/42



McEliece PKE ‘ Niederreiter PKE

KeyGen(n, k, t) = (pk, sk)

G-generator matrix matrix of € ‘ H-parity-check of &
\\ € an [n, k| that corrects t errors
An n x n permutation matrix P

A k X k invertible matrix S An (n — k) x (n — k) invertible
matrix S
Compute Gpup = SGP Compute Hpyp = SHP
pk = (Gpub7 t) pk = (Hpubu t)
sk=(S,G,P) sk = (S, H, P)
Encrypt(m, pk) = z
Encode m — ¢ = mGpyp Encode m — e
Choose e

\\ e a vector of weight t

z=c+e | z= Hpuwe'

Decrypt(z,sk) = m

Compute z* = zP~1 Compute z* = §7 1z
z* = mSG + eP™! z* = HPe

m* = Decode(z*, G) e* = Decode(z*, H)
Retrieve m from m*S—! Retrieve m from P~ le*
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SEMANTIC SECURITY

ONE-WAY FUNCTION

@ Assumptions
» Indistinguishability : The public code is computationally indistinguishable from
a uniformly chosen code of the same size (n k).
» Decoding hardness : Decoding a random linear code with parameters n, k, t is
hard.

4. B. Biswas, N. Sendrier. McEliece Cryptosystem Implementation : Theory and Practice.
PQCrypto. pp. 47-62. 2008.
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SEMANTIC SECURITY

ONE-WAY FUNCTION

@ Assumptions
» Indistinguishability : The public code is computationally indistinguishable from
a uniformly chosen code of the same size (n k).

» Decoding hardness : Decoding a random linear code with parameters n, k, t is
hard.

@ Given that both the above assumptions hold, the McEliece cryptosystem is
one-way secure under passive attacks. *

4. B. Biswas, N. Sendrier. McEliece Cryptosystem Implementation : Theory and Practice.
PQCrypto. pp. 47-62. 2008.
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DECODING HARDNESS IN THE MCELIECE SCHEME

The binary Goppa code is a [2™,2™ — mt, 2t + 1]

5. Finiasz, Matthieu. “Nouvelles constructions utilisant des codes correcteurs d’erreurs en
cryptographie a clef publique.” (2004).
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DECODING HARDNESS IN THE MCELIECE SCHEME

The binary Goppa code is a [2™,2™ — mt, 2t + 1]

Given : A parity-check matrix H for a [n, n — k] binary linear code
a syndrome vector s € F5 ¥ and t € N (n = 2™)
Find : e € Fj of weight t < (n — k)/log,(n) such that He = s.

5. Finiasz, Matthieu. “Nouvelles constructions utilisant des codes correcteurs d’erreurs en
cryptographie a clef publique.” (2004).
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DISTINGUISHER ASSUMPTION FOR GOPPA CODES°

@ Pseudo-randomness assumption
Input : A generator matrix G for a [2™,2™ — mt] binary linear code
Output : G generates a Goppa code?

6. Jean-Charles Faugere, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret, Jean-Pierre
Tillich. A Distinguisher for High Rate McEliece Cryptosystems. |IEEE Transactions on Information
Theory 2013.
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SEMANTIC SECURITY

CRITICAL ATTACKS

o McEliece PKE does not satisfy Non-Malleability (linearity)

given a McEliece criptogram y = mGp,, + €
compute a well-choose criptogram y* = m* Gpup

as the oracle to decrypt y +y* = (m+ m*)Gpyp + €
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SEMANTIC SECURITY

CRITICAL ATTACKS

o McEliece PKE does not satisfy Non-Malleability (linearity)

given a McEliece criptogram y =

ITI(;p,,b +e

compute a well-choose criptogram y* = m* Gpup

as the oracle to decrypt y +y* = (m+ m*)Gpyp + €

@ Reaction attacks in the CCA model

given a McEliece criptogram
flip a bit

if the decoder reaction is invalid ciphertext

if the decoder reaction is valid ciphertext

y=mGy,, +e
y/:y—f—(l,O,...,O)

Yy =mGpy +e+(1,0...,0)

e,-:O

e,-:1
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SEMANTIC SECURITY

CRITICAL ATTACKS

@ Resend-message attacks : the same message was encrypted several times

intercept

intercept

notice that

if the messages were different
select the set

Gaussian elimination on [/

y1 = mGyy + €

Y2 = mGpyp + €

du(y1, y2) = du(er, ) =2t — 26
du(y1, y2) ~ n/2

I = supp(y1 — y2)

Hpubel = 8.
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SEMANTIC SECURITY

CONVERSIONS

o For a McEliece IND-CPA without random oracles simply randomize the
message m* = (m|r)’

7. Nojima, R., Imai, H., Kobara, K. et al. Semantic security for the McEliece cryptosystem
without random oracles. Des. Codes Cryptogr. 49, 289-305 (2008)

8. K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems Conversions
for McEliece PKC, LNCS Springer, 2001
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SEMANTIC SECURITY

CONVERSIONS

o For a McEliece IND-CPA without random oracles simply randomize the
message m* = (m|r)’

@ For random oracles model - convert the one way trap door function into an
IND-CCA2 PKC

» simple OAEP conversion not working because of reaction attacks
» Kobara,Imai conversion to obtain an IND-CCA28

7. Nojima, R., Imai, H., Kobara, K. et al. Semantic security for the McEliece cryptosystem
without random oracles. Des. Codes Cryptogr. 49, 289-305 (2008)

8. K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems Conversions
for McEliece PKC, LNCS Springer, 2001
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McELIECE AND NIEDERREITER
MRA, KRA, DISTINGUISHER

McEliece Niederreiter
pk Gpub Hpub
Generic decoding Syndrome decoding
MRA Alg(mGpup + €, Gpyp) = m Alg(Hpure, Houp) = €
|le]| small lle|| small
Code Equivalence Problem
KRA Alg(Gpup, G) = P~ | Alg(Hpup, H) = P*
€ " G & € L,
Dtingisher | D(Gow) = { § 7 4 | DlFe) = 3 " 5
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Distinguish a public code from a random
code



EFFICIENT DISTINGUISHER FOR SOME FAMILIES OF
CODES

x*xy = (X1, XnYn)-
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EFFICIENT DISTINGUISHER FOR SOME FAMILIES OF
CODES

x*xy = (X1, XnYn)-

THEOREM 5 (CASCUDO, CRAMER, MIRANDOLA, ZEMOR -2015)

Let €1 = [n, k1] and €> = [n, ka]. Then w.h.p. we have

Dim (€, * €2) = min {,77 Gl — (Dlm (%21 N %2)> } |
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EFFICIENT DISTINGUISHER FOR SOME FAMILIES OF
CODES

x*xy = (X1, XnYn)-

THEOREM 5 (CASCUDO, CRAMER, MIRANDOLA, ZEMOR -2015)

Let €1 = [n, k1] and €> = [n, ka]. Then w.h.p. we have

Dim (€, * €2) = min {n, Gl — (Dlm (%21 N %)> } |

In particular, for € = [n, k] random binary code we have

Dim (¢?) = min {n, <k;rl> } . (1)

26/42



REED-SOLOMON CODES

DEFINITION 6 (GENERALIZED REED-SOLOMON CODES)
Let (x,y) € F5. x FJ., be a pair such that Vi, y; # 0 and Vi # j, x; # x;.

GRSK(x,¥) © {(1f(x1), .,y (xn)) | F € Folx] , deg(f) < k}.
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REED-SOLOMON CODES

DEFINITION 6 (GENERALIZED REED-SOLOMON CODES)
Let (x,y) € F5. x FJ., be a pair such that Vi, y; # 0 and Vi # j, x; # x;.

GRSK(x,¥) © {(1f(x1), .,y (xn)) | F € Folx] , deg(f) < k}.

1 1 .. 1
X1 X2 e Xn N y 0
2 2 2 p)
GGRSk(x,y) — Xi X5 X 0 _
k-1 k-1 k.—l Yn
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REED-SOLOMON CODES

GRS,(x,y)" = GRS, _«(x,2z), Hags, 1(xy)Z' =0
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REED-SOLOMON CODES

GRS,(x,y)" = GRS, _«(x,2z), Hags, 1(xy)Z' =0

GRS, (x,y)?> = GRS2_1(x, y?)
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REED-SOLOMON CODES

GRS,(x,y)" = GRS, _«(x,2z), Hags, 1(xy)Z' =0

GRS, (x,y)?> = GRS2_1(x, y?)

3<k<n+1

1
. Dim(GRSy(x,y)?) = 2k — 1 < (k; )
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REED-MULLER CODES

def
H(r,m) = {(g(vl,...,vm))(vl ,,,,, vm)eFy | gEFg[Xl,...,Xm],degggr}_
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REED-MULLER CODES

def
Z(r,m) = {(g(vi- - Vi) vm)eFy | g € Falx, .., xn] degg <r}.

Dim(#(r, m)) = " (’”)

i—0 \'/

29/42



REED-MULLER

R(r,m)* =R%(m—r—1,m)
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REED-MULLER

R(r,m)* =R%(m—r—1,m)

H(r,m)* = Z(2r, m)
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REED-MULLER

R(r,m)* =R%(m—r—1,m)

H(r,m)* = Z(2r, m)

Dim(%(r, m)?) = i (’") < @o (7) + 1).

i—=o \'/
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ALTERNANT AND (GOPPA CODES

Alt,(x,y) & GRS, (x, y)* NF}.

9. https://arxiv.org/pdf/2111.13038.pdf
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ALTERNANT AND (GOPPA CODES

Alt,(x,y) & GRS, (x, y)* NF}.

e 1
M(x,g) def Alt;(x,y), where y; = ——, g € Fom[x]|,degg =t

g(xi)

9. https://arxiv.org/pdf/2111.13038.pdf
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ALTERNANT AND (GOPPA CODES

Alt,(x,y) & GRS, (x, y)* NF}.

e 1
M(x,g) def Alt;(x,y), where y; = ——, g € Fom[x]|,degg =t

g(x)’

Alt,(x,y)*> =777°

9. https://arxiv.org/pdf/2111.13038.pdf
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BINARY GOPPA CODES

WANTED FOR CRYPTO RESILIENCE

DEFINITION 7 (BINARY GOPPA CODES)

Let x = (x1,...,Xs) € F3n with x; # x;,
g € Fom[x] with deg(g) =tst. V1<i<n g(x,) # 0.
Vc € I} define the rational function s.(x) = e 1 e

The binary Goppa code is

M(x,8) & {ceF}|s(x)=0 modg(x)}.
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PATTERSON ALGORITHM

o If y =c+ e then

n

(0 =2 ST = si(x) mod 5(x)

=
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PATTERSON ALGORITHM

o If y =c+ e then

() =3 S8 = 5,(x) mod g(x)

@ This implies
1

mod g(x)

icsupp(e) X

o 0(x) is called the error-locator polynomial : o(x) = [T;cqupp(e)(

X —

X;).
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PATTERSON ALGORITHM

n

ox) = 3 II (=)

icsupp(e) je€supp(e),j#i

i 1
= > II x—x)
i€supp(e)

i€supp(e)
u 1

=o(x) >

i€supp(e)

X — Xj

X — Xj

!

o (x) = o(x)sy(x) mod g(x).
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PATTERSON ALGORITHM

o Let o(x) = a(x)? + xb(x)? (deg(a) < (t — 1)/2,deg(b) < t/2).
o This implies o(x)" = b(x)? (over IFy), which makes

b* =0 =o0s, = (a°+xb?)s, mod g
e Since s,, g coprime, we have

a® = b%/x + s,* mod g.

e Find a(x), b(x) using Extended Euclidean Algorithm and compute o(x).
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PATTERSON ALGORITHM

Input : The syndrome polynomial ss(x) and the Goppa code g(x).
Output : The error vector e

@ si(x) "« EEA(g(x), s5(x))

Q 7(x) < /x4 57

@ a(x), b(x) + EEA(g(x),7(x)) s.t. b(x)7(x) = a(x) mod g(x)
Q o(x) <+ a*(x) + xb?(x)

Qe — (o(x1),...,0(x0)) B (1,...,1);
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McEliece and Niederreiter Summary
Perspectives



SUMMARY
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OTHER CONSTRUCTIONS

ALEKHNOVICH’S CRYPTOSYSTEMS

@ Underlying problem : distinguish a random vector from an erroneous codeword
of a random code % .
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OTHER CONSTRUCTIONS

ALEKHNOVICH’S CRYPTOSYSTEMS

@ Underlying problem : distinguish a random vector from an erroneous codeword
of a random code % .

@ The public key is a random code while the private key is an error vector.

@ Decryption is probabilistic

39/42



ALEKHNOVICH’S CRYPTOSYSTEMS

e Key Generation
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ALEKHNOVICH’S CRYPTOSYSTEMS

e Key Generation

@ Chose a random matrix A € M, (F2)
© Choose e € F at random of weight t

@ Choose x € F at random

Q@ Compute y =xA+eand H= (;‘)

40/42



ALEKHNOVICH’S CRYPTOSYSTEMS

e Key Generation
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ALEKHNOVICH’S CRYPTOSYSTEMS

e Key Generation

@ Chose a random matrix A € M, (F2)
© Choose e € F5 at random of weight t

@ Choose x € IF’z‘ at random
A
Q@ Computey=xA+ e and H= (y)

@ Choose G a generator matrix for ¢ = ker(H).

@ The private key sk = (e) and the public key pk = (G, t)
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ALEKHNOVICH’S CRYPTOSYSTEM

ENCRYPTION
Let m € Ty,
Q@ If m= 0 then

choose a € Fj~*
choose €' € F} of weight t
send ¢ = aG + e

@ If m =1 then send a random vector ¢ € F}

DECRYPTION
@ Compute b = (e, c)
Q If m=0then b=0w.hp. b= (e,aG) + (e,e') = (e, €)

Q@ Ifm=1then b=1w.p. 1/2
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